Most of you may have read Rota's "Ten lessons I wish I had been taught". However, if you were not of drinking age when Rota regaled us with his wisdom, please check the link below.
alumni.media.mit.edu/~cahn/life/gian-carlo-rota-10-lessons.html#toc
Wednesday, May 22, 2013
Monday, May 20, 2013
Remarkable and unexpected progress in prime gap theory
This is a fascinating story about a mathematician "past his prime" taking the math world by surprise.
Yitang Zhang Proves 'Landmark' Theorem in Distribution of Prime Numbers | Simons Foundation
Thursday, May 16, 2013
Plagiarism in Romanian academia
This is a piece that I wrote one my non-mathematical blog and I thought it deserves some exposure to a mathematical audience.
EpsilonBee: Plagiarism in Romanian academia
EpsilonBee: Plagiarism in Romanian academia
Tuesday, May 14, 2013
The weak Goldbach conjecture is settled.
Quoting Terry Tao: "Busy day in analytic number theory; Harald Helfgott has complemented his previous paper http://arxiv.org/abs/1205.5252 (obtaining minor arc estimates for the odd Goldbach problem) with major arc estimates, thus finally obtaining an unconditional proof of the odd Goldbach conjecture that every odd number greater than five is the sum of three primes. "
Thursday, May 9, 2013
On the pitfalls of "Open Access" publishing
The e-mail below from our library says it all. (Emphasis is mine.)
"Dear Liviu Nicolaescu,
A request you have placed:
Journal of advanced research in statistics and probability
3 3 2011
Title: On the central limit theorem for m-dependent random variables with unbounded m
Author: Shang, Yilun
TN: 685774
has been cancelled by the interlibrary loan staff for the following reason:
We have exhausted all possible sources.
This is so frustraing! [sic] We haven't been able to find any library that has this journal, Per the journal's website it is supposed to be Open Access meaning we should be able to get any of the articles online at no charge but their "archive" returns an empty screen with no way ot getting to the older journal issues. We tried this on different days just to make sure it wasn't a one-day system problem. We have not been able to find an email address for the author so that we could ask him directly. We've found a number of other articles by this author on this subject but not this one. We're just out of options on this one."
"Dear Liviu Nicolaescu,
A request you have placed:
Journal of advanced research in statistics and probability
3 3 2011
Title: On the central limit theorem for m-dependent random variables with unbounded m
Author: Shang, Yilun
TN: 685774
has been cancelled by the interlibrary loan staff for the following reason:
We have exhausted all possible sources.
This is so frustraing! [sic] We haven't been able to find any library that has this journal, Per the journal's website it is supposed to be Open Access meaning we should be able to get any of the articles online at no charge but their "archive" returns an empty screen with no way ot getting to the older journal issues. We tried this on different days just to make sure it wasn't a one-day system problem. We have not been able to find an email address for the author so that we could ask him directly. We've found a number of other articles by this author on this subject but not this one. We're just out of options on this one."
Wednesday, May 8, 2013
A cute application of Burnside's lemma
I would like to discuss a cute application of Burnside's lemma to a question I learned on Mathoverflow.
First let me present Burnside's lemma.
Burnside's lemma Let X be a finite set and G a finite group acting on X,
G\times X\to X,\;\; (g,x)\mapsto g\cdot x.
Denote by G\backslash X be the space of orbits of this action. For each g\in G we denote by X^g the set of points in X fixed by g
X^g:=\lbrace x\in X;\;\;g\cdot x=x\rbrace.
Then
|G\backslash X|=\frac{1}{|G|} \sum_{g\in G} |X^g|,
where |A| denotes the cardinality of a set A.
Proof. Look at the set \newcommand{\bZ}{\mathbb{Z}} \newcommand{\eF}{\mathscr{F}}
\eF = \bigl\lbrace (g,x)\in G\times X;\;\;g\cdot x= x\bigr\rbrace.
It defines a tautological double "fibration"
G\stackrel{\ell}{\longleftarrow} \eF \stackrel{r}{\longrightarrow} X,
where the maps \ell and r are induced by the canonical projections G\leftarrow G\times X and G\times X\to X. We deduce
\sum_{g\in G}|\ell^{-1}(g)|=|\eF|=\sum_{x\in X} |r^{-1}(x)|.
Observe that the fiber \ell^{-1}(g) can be identified with the set X^g so that
\begin{equation} \sum_{g\in G}|X^g|=\sum_{x\in X} |r^{-1}(x)|. \tag{1} \label{1} \end{equation}
For any x\in X the fiber r^{-1}(x) can be identified with the stabilizer G_x of x,
G_x=\bigl\lbrace g\in G;\;\; g\cdot x =x\bigr\rbrace.
If x, y are in the same orbit of G then |G_x|=|G_y|. Indeed, if y=g\cdot x then G_y=gG_xG^{-1}.
The function x\mapsto |r^{-1}(x)| is thus constant along the orbits of G on X. Thus the contribution of a single orbit G\cdot x_0 to the sum \sum_x|r^{-1}(x)| is |G_{x_0}|\cdot |G\cdot x_0|=|G|. This shows that
\sum_{x\in X} |r^{-1}(x)|= |G|\times \mbox{the number of orbits} =|G|\times |G\backslash X|.
The desired conclusion now follows from (\ref{1}). \Box
I can now discuss the problem that prompted this post. It is about certain planar lattice walks. The allowable steps of this walk belong to the collection \newcommand{\eS}{\mathscr{S}} \newcommand{\be}{\boldsymbol{e}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bs}{\boldsymbol{s}}
\eS=\lbrace \pm\be_1,\pm\be_2\rbrace\subset \bR^2,\;\;\be_1=(1,0),\;\;\be_2=(0,1).
A walk of length n is then an ordered collection of steps
\vec{\bs}= (\bs_1,\dotsc, \bs_n)\in\eS^n.
The above walk is called admissible if
\bs_j+\bs_{j-1}\neq 0,\;\;\forall j=2,\dotsc, n. \tag{2}\label{2}
We denote by \newcommand{\eA}{\mathscr{A}} \eA_n the set of admissible walks of length n. Since \bs_1 can be chosen in four different ways, while each of the following steps can be chosen in three different ways so as to preserve (\ref{2}) we deduce
|\eA_n|= 4\cdot 3^{n-1}. \tag{3}\label{3}
There is however a symmetry in the story, i.e., a group acting on \eA_n. \newcommand{\eO}{\mathscr{\eO}} Denote by G_0 the subgroup of O(2) generated by the reflections R_0, R_1, R_2 where
R_0\be_1=\be_2,\;\;R_0\be_2=\be_1,
R_1\be_1=\be_1,\;\;R_1\be_2=-\be_2,
R_2\be_1=-\be_1,\;\;R_2\be_2=-\be_2.
This group has order 8 and can be identified with the Weyl group of O(4).
The group G_0 acts on \bR^2 and \eS\subset \bR^2 is a G_0-invariant subset. In particular, G_0 acts on the set \eS^n of walks of length n, and \eA_n\subset \eS^n is G_0-invariant. Observe that if g\in G_0 then
\eS^g= \begin{cases} \eS, & g=1\\ \{\pm \be_1\} & g=R_1,\\ \{\pm \be_2\}, & g=R_2\\ \emptyset, & g\neq 1,R_1,R_2. \end{cases} \tag{4} \label{4}
There exists another involution R_3 that acts on \eS^n. More precisely
R_3(\bs_1,\dotsc,\bs_n)=(\bs_n,\dotsc,\bs_1).
Clearly R_3\eA_n\subset\eA_n. We denote by G the subgroup of the group of permutations of \eA_n generated by G_0 and R_3. Since obviously R_3 commutes with all of the reflections R_0,R_1, R_2 we deduce that G\cong G_0\times (\bZ/2).
We would like to compute the number of orbits of the action of G on \eA_n. We denote by p_n this number. The final answer is contained in the equalities (\ref{odd}) and (\ref{even}) below which show different behaviors depending on whether n is odd or even. Here are the details.
For any \gamma\in G we denote by \eA_n(\gamma) the set of admissible paths of length n fixed by \gamma and we set p_n(\gamma):=|\eA_n(\gamma)|. From Burnside's lemma we deduce
p_n=\frac{1}{16} \sum_{\gamma\in G} p_n(\gamma).\tag{5}\label{5}
We need to compute the numbers p_n(g). We distinguish two cases.
A. \gamma\in G_0. If \gamma=1, then
p_n(1)= |\eA_n|.
Suppose that \gamma\neq 1. Then \vec{\bs}\in\eA_n(\gamma)\subset \eS^n iff
\gamma\bs_j=\bs_j,\;\;\forall j=1,\dotsc, n.
According to (\ref{4}) the only nontrivial elements of G_0 that have fixed points when acting on \eS are R_1, R_2. The only admissible paths of length 1 that are R_j-invariant, j=1,2 are
(\be_j,\dotsc,\be_j),\;\;(-\be_j,\dotsc,-\be_j). Hence, if \gamma\in G_0, then
p_n(\gamma)=\begin{cases} |\eA_n|, & \gamma=1\\ 2, & \gamma=R_1,R_2,\\ 0, & \mbox{otherwise}. \end{cases} \tag{6}\label{6}
B. \gamma=(g,R_3), g\in G_0.
Hence \newcommand{\Llra}{\Longleftrightarrow}
\vec{\bs}\in \eA_n(g, R_3)\Llra R_3\vec{\bs}=g\vec{\bs}.
If h\in G_0, \vec{\bs}\in\eA_n(g,R_3) and \newcommand{\si}{\boldsymbol{\sigma}} we set \vec{\si} = h\vec{\bs}, then
R_3\vec{\si}= R_3 h \vec{\bs}= h R_3 \vec{\bs}= hg \vec{\bs}= hgh^{-1} \vec{\si}.
This shows that
|\eA_n(g,R_3)|=|\eA_n(hgh^{-1}, R_3)|,\;\;\forall g,h\in G_0.\tag{7}\label{7}
This shows that the map G_0\ni g\mapsto |\eA_n(g, R_3)| is constant on the conjugacy classes of G_0. Let us describe these conjugacy classes. It helps to observe that the morphism \det :O(2)\to\{\pm 1\} induces a morphism
\det :G_0\to\{\pm 1\}
and this morphism is constant on the conjugacy classes. There exist two conjugacy classes of determinant -1
C(R_1)=\{ R_1, R_2=-R_1\},\;\; C(R_0)=\{R_0, -R_0\}.
The other conjugacy classes are
C_1=\{1\},\;\; C_{-1}= \{-1\}, \;\; C=\{ J, -J\},
where J= RR_1 is the counterclockwise rotation by \pi/2. Thus we need to compute the five numbers
p_n(\pm 1,R_3), \; p_n(R_1,R_3), \; p_n(R_0,\; R_3), \; p_n(J, R_3).
We discuss them separately. Set m:=\lfloor (n+1)/2\rfloor
\eA_n(1,R_3). A walk \vec{\bs}\in \eA_n(1,R_3) is determined by the initial segment of length m which could be an arbitrary walk in \eA_m.
For n even, n=2m, a walk \vec{\bs}\in \eA_n(1,R_3) if and only if it has the form
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,\bs_{m},\bs_{m-1},\dotsc, \bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
For n odd, n=2m-1, a walk \vec{\bs}\in \eA_n(1,R_3) if and only if it has the form
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,\bs_{m-1},\dotsc, \bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m. .
Hence
p_n(1, R_3)= |\eA_m|= 4\cdot 3^{\lfloor(n+1)/2\rfloor -1}. \tag{8}\label{8}
\eA_n(-1,R_3). Such a path is again determined by the initial segment of length m.
For n even, n=2m, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,-\bs_{m},-\bs_{m-1},\dotsc, -\bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
Clearly such a path is not admissible. Hence \eA_m(-1, R_3)=\emptyset if n is even.
If n is odd, n=2m-1, and \vec{\bs}\in\eA_n(-1,R_3), then \bs_m=-\bs_m. Not possible!.
Hence
p_n(-1,R_3)=0,\;\;\forall n. \tag{9}\label{9}
\eA_n(R_1,R_3). A path \vec{\bs}=(\bs_1,\dotsc,\bs_n)\in\eA_n(R_1, R_3) is determined by initial segment of length m.
For n even, n=2m, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,R_1\bs_{m},R_1\bs_{m-1},\dotsc, R_1\bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
Such a path is admissible if and only if \bs_m+R_1\bs_m\neq 0, i.e., \bs_m=\pm\be_1. The number of admissible paths (\bs_1,\dotsc,\bs_m) which end with \bs_m=\pm\be_1 is 2\cdot 3^{m-1}.
For n odd, n=2m-1, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc,\bs_{m-1}\,\bs_m, R_1\bs_{m-1},\dotsc, R_1\bs_1),\;\;\bs_m=R_1\bs_m.
We deduce
p_n(R_1,R_3) =2\cdot 3^{m-1},\;\;m=\lfloor(n+1)/2\rfloor. \tag{10}\label{10}
\eA_n(R_0,R_3). Arguing as above we deduce that if (\bs_1,\dotsc,\bs_n)\in\eA(R_0,R_3) and n is odd, then R_0\bs_m=\bs_m which is impossible because R_0 does not have fixed points on \eS.
For n even, n=2m, \vec{\bs}=(\bs_1,\dotsc,\bs_n)\in \eA_n(R_0,R_3) if and only if
\vec{\bs}=(\bs_1,\dotsc,\bs_{m-1}\bs_m,R_0\bs_m, R_0\bs_{m-1},\dotsc, R_0\bs_1),\;\; (\bs_1,\dotsc,\bs_m,R_0\bs_m)\in \eA_m.
Whatever \bs_m\in\eS, we have \bs_m+R_0\bs_m\neq 0. We deduce
p_n(R_0, R_3)=\begin{cases} 0, & n=2m-1\\ 4\cdot 3^{m-1}, & n=2m. \end{cases} \tag{11}\label{11}
\eA_n(J,R_3). We observe that
(\bs_1,\dotsc,\bs_n)\in\eA_n(J, R_3)\Llra (J\bs_n,\dotsc, J\bs_1)=(\bs_1,\dotsc,\bs_n).
This implies J^2\bs_n=\bs_n which is obviously impossible. Hence
p_n(J, R_3) =0,\;\;\forall n. \tag{12}\label{12}
Using (\ref{5}) and (\ref{6}) we deduce
p_n=\frac{1}{16}\Bigl( 4\cdot 3^{n-1}+4 +p_n(1,R_3)+ p_n(-1,R_3)+ 2p_n(R_1,R_3) +2p_n(R_0,R_3) +2p_n(J)\Bigr)
= \frac{1}{16}\Bigl( 4\cdot 3^{n-1}+4 +p_n(1,R_3)+ 2p_n(R_1,R_3) +2p_n(R_0,R_3) \Bigr).
Using (\ref{8}), (\ref{9}), (\ref{10}), (\ref{11}), (\ref{12}) in the above equality we deduce the following.
If n=2m-1, then
If n=2m, then
p_n= \frac{1}{16}\Bigl( 4\cdot 3^{n-1} + 4 + 16\cdot 3^{m-1}\Bigr) = \frac{1}{4}\bigl(\,3^{n-1}+4\cdot 3^{m-1}+1\bigr). \tag{$\ast\ast$}\label{even}
First let me present Burnside's lemma.
Burnside's lemma Let X be a finite set and G a finite group acting on X,
G\times X\to X,\;\; (g,x)\mapsto g\cdot x.
Denote by G\backslash X be the space of orbits of this action. For each g\in G we denote by X^g the set of points in X fixed by g
X^g:=\lbrace x\in X;\;\;g\cdot x=x\rbrace.
Then
|G\backslash X|=\frac{1}{|G|} \sum_{g\in G} |X^g|,
where |A| denotes the cardinality of a set A.
Proof. Look at the set \newcommand{\bZ}{\mathbb{Z}} \newcommand{\eF}{\mathscr{F}}
\eF = \bigl\lbrace (g,x)\in G\times X;\;\;g\cdot x= x\bigr\rbrace.
It defines a tautological double "fibration"
G\stackrel{\ell}{\longleftarrow} \eF \stackrel{r}{\longrightarrow} X,
where the maps \ell and r are induced by the canonical projections G\leftarrow G\times X and G\times X\to X. We deduce
\sum_{g\in G}|\ell^{-1}(g)|=|\eF|=\sum_{x\in X} |r^{-1}(x)|.
Observe that the fiber \ell^{-1}(g) can be identified with the set X^g so that
\begin{equation} \sum_{g\in G}|X^g|=\sum_{x\in X} |r^{-1}(x)|. \tag{1} \label{1} \end{equation}
For any x\in X the fiber r^{-1}(x) can be identified with the stabilizer G_x of x,
G_x=\bigl\lbrace g\in G;\;\; g\cdot x =x\bigr\rbrace.
If x, y are in the same orbit of G then |G_x|=|G_y|. Indeed, if y=g\cdot x then G_y=gG_xG^{-1}.
The function x\mapsto |r^{-1}(x)| is thus constant along the orbits of G on X. Thus the contribution of a single orbit G\cdot x_0 to the sum \sum_x|r^{-1}(x)| is |G_{x_0}|\cdot |G\cdot x_0|=|G|. This shows that
\sum_{x\in X} |r^{-1}(x)|= |G|\times \mbox{the number of orbits} =|G|\times |G\backslash X|.
The desired conclusion now follows from (\ref{1}). \Box
I can now discuss the problem that prompted this post. It is about certain planar lattice walks. The allowable steps of this walk belong to the collection \newcommand{\eS}{\mathscr{S}} \newcommand{\be}{\boldsymbol{e}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bs}{\boldsymbol{s}}
\eS=\lbrace \pm\be_1,\pm\be_2\rbrace\subset \bR^2,\;\;\be_1=(1,0),\;\;\be_2=(0,1).
A walk of length n is then an ordered collection of steps
\vec{\bs}= (\bs_1,\dotsc, \bs_n)\in\eS^n.
The above walk is called admissible if
\bs_j+\bs_{j-1}\neq 0,\;\;\forall j=2,\dotsc, n. \tag{2}\label{2}
We denote by \newcommand{\eA}{\mathscr{A}} \eA_n the set of admissible walks of length n. Since \bs_1 can be chosen in four different ways, while each of the following steps can be chosen in three different ways so as to preserve (\ref{2}) we deduce
|\eA_n|= 4\cdot 3^{n-1}. \tag{3}\label{3}
There is however a symmetry in the story, i.e., a group acting on \eA_n. \newcommand{\eO}{\mathscr{\eO}} Denote by G_0 the subgroup of O(2) generated by the reflections R_0, R_1, R_2 where
R_0\be_1=\be_2,\;\;R_0\be_2=\be_1,
R_1\be_1=\be_1,\;\;R_1\be_2=-\be_2,
R_2\be_1=-\be_1,\;\;R_2\be_2=-\be_2.
This group has order 8 and can be identified with the Weyl group of O(4).
The group G_0 acts on \bR^2 and \eS\subset \bR^2 is a G_0-invariant subset. In particular, G_0 acts on the set \eS^n of walks of length n, and \eA_n\subset \eS^n is G_0-invariant. Observe that if g\in G_0 then
\eS^g= \begin{cases} \eS, & g=1\\ \{\pm \be_1\} & g=R_1,\\ \{\pm \be_2\}, & g=R_2\\ \emptyset, & g\neq 1,R_1,R_2. \end{cases} \tag{4} \label{4}
There exists another involution R_3 that acts on \eS^n. More precisely
R_3(\bs_1,\dotsc,\bs_n)=(\bs_n,\dotsc,\bs_1).
Clearly R_3\eA_n\subset\eA_n. We denote by G the subgroup of the group of permutations of \eA_n generated by G_0 and R_3. Since obviously R_3 commutes with all of the reflections R_0,R_1, R_2 we deduce that G\cong G_0\times (\bZ/2).
We would like to compute the number of orbits of the action of G on \eA_n. We denote by p_n this number. The final answer is contained in the equalities (\ref{odd}) and (\ref{even}) below which show different behaviors depending on whether n is odd or even. Here are the details.
For any \gamma\in G we denote by \eA_n(\gamma) the set of admissible paths of length n fixed by \gamma and we set p_n(\gamma):=|\eA_n(\gamma)|. From Burnside's lemma we deduce
p_n=\frac{1}{16} \sum_{\gamma\in G} p_n(\gamma).\tag{5}\label{5}
We need to compute the numbers p_n(g). We distinguish two cases.
A. \gamma\in G_0. If \gamma=1, then
p_n(1)= |\eA_n|.
Suppose that \gamma\neq 1. Then \vec{\bs}\in\eA_n(\gamma)\subset \eS^n iff
\gamma\bs_j=\bs_j,\;\;\forall j=1,\dotsc, n.
According to (\ref{4}) the only nontrivial elements of G_0 that have fixed points when acting on \eS are R_1, R_2. The only admissible paths of length 1 that are R_j-invariant, j=1,2 are
(\be_j,\dotsc,\be_j),\;\;(-\be_j,\dotsc,-\be_j). Hence, if \gamma\in G_0, then
p_n(\gamma)=\begin{cases} |\eA_n|, & \gamma=1\\ 2, & \gamma=R_1,R_2,\\ 0, & \mbox{otherwise}. \end{cases} \tag{6}\label{6}
B. \gamma=(g,R_3), g\in G_0.
Hence \newcommand{\Llra}{\Longleftrightarrow}
\vec{\bs}\in \eA_n(g, R_3)\Llra R_3\vec{\bs}=g\vec{\bs}.
If h\in G_0, \vec{\bs}\in\eA_n(g,R_3) and \newcommand{\si}{\boldsymbol{\sigma}} we set \vec{\si} = h\vec{\bs}, then
R_3\vec{\si}= R_3 h \vec{\bs}= h R_3 \vec{\bs}= hg \vec{\bs}= hgh^{-1} \vec{\si}.
This shows that
|\eA_n(g,R_3)|=|\eA_n(hgh^{-1}, R_3)|,\;\;\forall g,h\in G_0.\tag{7}\label{7}
This shows that the map G_0\ni g\mapsto |\eA_n(g, R_3)| is constant on the conjugacy classes of G_0. Let us describe these conjugacy classes. It helps to observe that the morphism \det :O(2)\to\{\pm 1\} induces a morphism
\det :G_0\to\{\pm 1\}
and this morphism is constant on the conjugacy classes. There exist two conjugacy classes of determinant -1
C(R_1)=\{ R_1, R_2=-R_1\},\;\; C(R_0)=\{R_0, -R_0\}.
The other conjugacy classes are
C_1=\{1\},\;\; C_{-1}= \{-1\}, \;\; C=\{ J, -J\},
where J= RR_1 is the counterclockwise rotation by \pi/2. Thus we need to compute the five numbers
p_n(\pm 1,R_3), \; p_n(R_1,R_3), \; p_n(R_0,\; R_3), \; p_n(J, R_3).
We discuss them separately. Set m:=\lfloor (n+1)/2\rfloor
\eA_n(1,R_3). A walk \vec{\bs}\in \eA_n(1,R_3) is determined by the initial segment of length m which could be an arbitrary walk in \eA_m.
For n even, n=2m, a walk \vec{\bs}\in \eA_n(1,R_3) if and only if it has the form
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,\bs_{m},\bs_{m-1},\dotsc, \bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
For n odd, n=2m-1, a walk \vec{\bs}\in \eA_n(1,R_3) if and only if it has the form
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,\bs_{m-1},\dotsc, \bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m. .
Hence
p_n(1, R_3)= |\eA_m|= 4\cdot 3^{\lfloor(n+1)/2\rfloor -1}. \tag{8}\label{8}
\eA_n(-1,R_3). Such a path is again determined by the initial segment of length m.
For n even, n=2m, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,-\bs_{m},-\bs_{m-1},\dotsc, -\bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
Clearly such a path is not admissible. Hence \eA_m(-1, R_3)=\emptyset if n is even.
If n is odd, n=2m-1, and \vec{\bs}\in\eA_n(-1,R_3), then \bs_m=-\bs_m. Not possible!.
Hence
p_n(-1,R_3)=0,\;\;\forall n. \tag{9}\label{9}
\eA_n(R_1,R_3). A path \vec{\bs}=(\bs_1,\dotsc,\bs_n)\in\eA_n(R_1, R_3) is determined by initial segment of length m.
For n even, n=2m, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc, \bs_{m-1},\bs_m,R_1\bs_{m},R_1\bs_{m-1},\dotsc, R_1\bs_1),\;\;(\bs_1,\dotsc,\bs_m)\in\eA_m.
Such a path is admissible if and only if \bs_m+R_1\bs_m\neq 0, i.e., \bs_m=\pm\be_1. The number of admissible paths (\bs_1,\dotsc,\bs_m) which end with \bs_m=\pm\be_1 is 2\cdot 3^{m-1}.
For n odd, n=2m-1, if \vec{\bs}\in \eA_n(-1,R_3), then
\vec{\bs}=(\bs_1,\dotsc,\bs_{m-1}\,\bs_m, R_1\bs_{m-1},\dotsc, R_1\bs_1),\;\;\bs_m=R_1\bs_m.
We deduce
p_n(R_1,R_3) =2\cdot 3^{m-1},\;\;m=\lfloor(n+1)/2\rfloor. \tag{10}\label{10}
\eA_n(R_0,R_3). Arguing as above we deduce that if (\bs_1,\dotsc,\bs_n)\in\eA(R_0,R_3) and n is odd, then R_0\bs_m=\bs_m which is impossible because R_0 does not have fixed points on \eS.
For n even, n=2m, \vec{\bs}=(\bs_1,\dotsc,\bs_n)\in \eA_n(R_0,R_3) if and only if
\vec{\bs}=(\bs_1,\dotsc,\bs_{m-1}\bs_m,R_0\bs_m, R_0\bs_{m-1},\dotsc, R_0\bs_1),\;\; (\bs_1,\dotsc,\bs_m,R_0\bs_m)\in \eA_m.
Whatever \bs_m\in\eS, we have \bs_m+R_0\bs_m\neq 0. We deduce
p_n(R_0, R_3)=\begin{cases} 0, & n=2m-1\\ 4\cdot 3^{m-1}, & n=2m. \end{cases} \tag{11}\label{11}
\eA_n(J,R_3). We observe that
(\bs_1,\dotsc,\bs_n)\in\eA_n(J, R_3)\Llra (J\bs_n,\dotsc, J\bs_1)=(\bs_1,\dotsc,\bs_n).
This implies J^2\bs_n=\bs_n which is obviously impossible. Hence
p_n(J, R_3) =0,\;\;\forall n. \tag{12}\label{12}
Using (\ref{5}) and (\ref{6}) we deduce
p_n=\frac{1}{16}\Bigl( 4\cdot 3^{n-1}+4 +p_n(1,R_3)+ p_n(-1,R_3)+ 2p_n(R_1,R_3) +2p_n(R_0,R_3) +2p_n(J)\Bigr)
= \frac{1}{16}\Bigl( 4\cdot 3^{n-1}+4 +p_n(1,R_3)+ 2p_n(R_1,R_3) +2p_n(R_0,R_3) \Bigr).
Using (\ref{8}), (\ref{9}), (\ref{10}), (\ref{11}), (\ref{12}) in the above equality we deduce the following.
If n=2m-1, then
p_n= \frac{1}{16}\Bigl( 4\cdot 3^{n-1} + 4 + 8\cdot 3^{m-1}\Bigr) = \frac{1}{4}\bigl(\,3^{n-1}+2\cdot 3^{m-1}+1\bigr).\tag{$\ast$}\label{odd}
If n=2m, then
p_n= \frac{1}{16}\Bigl( 4\cdot 3^{n-1} + 4 + 16\cdot 3^{m-1}\Bigr) = \frac{1}{4}\bigl(\,3^{n-1}+4\cdot 3^{m-1}+1\bigr). \tag{$\ast\ast$}\label{even}
Thursday, May 2, 2013
Divided differences
I stumbled on this concept in an beautiful old paper of Feller. This seems to be well known to numerical analysts, but since this construction got me out of a jam I thought it would nice to advertise it. Most of what follows is from the Milne Thompson's classic "The Calculus of Finite Differences".
To start, suppose \newcommand{\bR}{\mathbb{R}} \newcommand{\bZ}{\mathbb{Z}} that f:\bR\to \bR is a smooth function. For any pairwise distinct points x_0, x_1,\dotsc,x_n we define recursively
f[x_0] :=f(x_0),\;\; f[x_0,x_1]:=\frac{f(x_1)-f(x_0)}{x_1-x_0},
f[x_0,x_1,\dotsc, x_n] :=\frac{f[x_1,\dotsc,x_n]-f[x_0,\dotsc, x_{n-1}]}{x_n-x_0}=\frac{f[x_0,\dotsc,x_{n-1}]-f[x_1,\dotsc, x_n]}{x_0-x_n}.\tag{R}\label{R}
The quantity f[x_0,\dotsc, x_n] is called the n-th divided difference of f at the nodes x_0,\dotsc, x_n. Note that we have
f[x_0,x_1]= \frac{f(x_0)}{x_0-x_1}+\frac{f(x_1)}{x_1-x_0}.
Observe that
f[x_1,x_2]- f[x_0,x_1]= \frac{f(x_1)}{x_1-x_2}+\frac{f(x_2)}{x_2-x_1}- \frac{f(x_0)}{x_0-x_1}-\frac{f(x_1)}{x_1-x_0}
=\frac{f(x_2)}{x_2-x_1}+\frac{f(x_1)(x_2-x_0)}{(x_1-x_2)(x_1-x_0)} - \frac{f(x_0)}{x_0-x_1}.
We deduce
\begin{equation} f[x_0,x_1,x_2]=\frac{ f[x_1,x_2]- f[x_0,x_1]}{x_2-x_0}=\frac{f(x_0)}{(x_0-x_1)(x_0-x_2)}+\frac{f(x_1)}{(x_1-x_2)(x_1-x_0)}+ \frac{f(x_2)}{(x_2-x_0)(x_2-x_1)}\tag{I}\label{I}. \end{equation}
Arguing inductively we obtain the following description
f[x_0, x_1,\dotsc, x_n]=\frac{f(x_0)}{(x_0-x_1)(x_0-x_2)\cdots (x_0-x_n)}+\frac{f(x_1)}{(x_1-x_0)(x_1-x_2)\cdots(x_1-x_n)}+\cdots + \frac{f(x_n)}{(x_n-x_0)\cdots (x_n-x_{n-1})}.
This last expression can be given a more symmetric expression by introducing the polynomial
\Phi_{x_0,\dotsc,x_n}:=\prod_{k=0}^n (x-x_k).
We then have
\Phi'_{x_0,\dotsc, x_n}(x)=(x-x_1)\cdots (x-x_n)+(x-x_0)(x-x_2)\cdots (x-x_n)+\cdots +(x-x_0)\cdots (x-x_{n-1}),
f[x_0, x_1,\dotsc, x_n]=\sum_{k=0}^n\frac{f(x_k)}{\Phi'_{x_0,\dotsc,x_n}(x_k)}.\tag{1}\label{1}
The last equality shows has the following useful consequence.
Proposition 1. The n-th divided difference f[x_0,\dotsc, x_n] does not change if we permute the nodes x_0, x_1,\dotsc, x_n. \Box
The equality (\ref{1}) can be conveniently rephrased in terms of Vandermonde-like determinants. Denote by V(x_0,\dotsc, x_n) the (n+1)\times (n+1) matrix
V(x_0, \dotsc, x_n)=\left[ \begin{array}{ccccc} 1 & 1 & 1 &\cdots & 1\\ x_0 & x_1 & x_2 &\cdots & x_n\\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_n^2\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ x_0^n & x_1^n & x_2^n & \cdots & x_n^n \end{array} \right],
and by V_f(x_0,\dotsc, x_n) the (n+1)\times (n+1) matrix
V_f(x_0, \dotsc, x_n)=\left[ \begin{array}{ccccc} 1 & 1 & 1 &\cdots & 1\\ x_0 & x_1 & x_2 &\cdots & x_n\\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_n^2\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1}\\ f(x_0) & f(x_1) & f(x_2) & \cdots & f(x_n) \end{array} \right].
Expanding along the last row of V_f(x_0,\dotsc, x_n) we obtain the following alternate description of the n-th divided difference
f[x_0,x_1,\dotsc, x_n]= \frac{\det V_f(x_0,\dotsc, x_n)}{V(x_0,\dotsc, x_n)}. \tag{V}
Next, we want to prove that f[x_0,\dotsc, x_n] makes sense even if the nodes are not pairwise disjoint. We need to make small technical digression.
Consider the n-simplex
\Delta_n :=\Bigl\{ (t_0,\dotsc, t_n)\in\bR^{n+1}_{\geq 0};\;\;\sum_{k=0}^n t_k=1\Bigr\}.
We can view \Delta_n as the graph of the function
T_n\ni (t_1,\dotsc, t_n)\mapsto t_0=1-(t_1+\cdots +t_n)\in\bR,
where
T_n:=\bigr\{ (t_1,\dotsc, t_n)\in\bR^n_{\geq 0};\;\; t_1+t_2+\cdots +t_n\leq 1\bigr\}.
If we use (t_1,\dotsc, t_n) as coordinates on \Delta_n, then we deduce that dA_{\Delta_n}, the area density on \Delta_n is given by
|dA_{\Delta_n}(t_1,\dotsc, t_n)|={\sqrt{n+1}} |dt_1\cdots d t_n|.
On T_n we can introduce new coordinates
s_1=t_1+\cdots +t_n, \;\; s_2= t_2+\cdots +t_n,\dotsc, s_n=t_n.
We observe that
0\leq s_n\leq \cdots \leq s_1\leq 1,\;\; dt_1\cdots dt_n=ds_1\cdots ds_n,
t_1=s_1-s_2,\;\;t_2=s_2-s_3,\dotsc.
If u: \Delta_n\to \bR is a continuous function, then we can regard it as a function of the variables s_1, \dotsc, s_n and we have
\int_{\Delta_n} u(t_0,\dotsc, t_n) |dA_{\Delta_n}| = \sqrt{n+1}\int_{0\leq s_n\leq \cdots \leq s_1\leq 1} u(s_1, \dotsc, s_n) ds_1\cdots ds_n
={\sqrt{n+1}}\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} u(s_1,\dotsc, s_n) ds_n.
Hence
\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} u(s_1,\dotsc, s_n)=\frac{1}{\sqrt{n+1}}\int_{\Delta_n} u(t_0,\dotsc, t_n) |dA|. \tag{2} \label{2}
Proposition 2. (Hermite) For any n>0 and pairwise distinct points x_0,\dotsc, x_n\in\bR we have
f[x_0,\dotsc, x_n]=\frac{1}{\sqrt{n+1}}\int_{\Delta_n} f^{(n)} (t_0x_0+\cdots +t_n x_n) dA(t_0,\dotsc, t_n). \tag{3} \label{3}
Proof. In view of (\ref{2}) we see that (\ref{3}) is equivalent to
f[x_0,\dotsc, x_n]= \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} f^{(n)} (y_n) ds_n, \tag{4}\label{4}
where
y_n=(1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-1}-s_n)x_{n-1}+ s_n x_n.\tag{5} \label{5}
For n=1 the right-hand-side of (\ref{4}) becomes
\int_0^1 f'(x_0+t(x_1-x_0)) dt = \frac{1}{x_1-x_0} (f(x_1)-f(x_0))=f[x_0,x_1].
We now proceed inductively and we observe that
\int_0^{s_{n-1}} f^{(n)} (y_n) ds_n = \frac{1}{x_n-x_{n-1}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2} +s_{n-1} x_n\;\bigr)
- \frac{1}{x_n-x_{n-1}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2}+s_{n-1} x_{n-1}\;\bigr).
Hence
\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} f^{(n)} (y_n) ds_n
= \frac{1}{x_n-x_{n-1}} \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-2}}f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2} +s_{n-1} x_n\;\bigr) ds_{n-1}
- \frac{1}{x_n-x_{n-1}} \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-2}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2}+s_{n-1} x_{n-1}\;\bigr) ds_{n-1}
\frac{1}{x_n-x_{n-1}}f[x_0,\dotsc,x_{n-2},x_{n}]- \frac{1}{x_n-x_{n-1}}f[x_0,\dotsc, x_{n-2}, x_{n-1}]
= \frac{1}{x_n-x_{n-1}}f[x_0,\dotsc,x_{n-2},x_{n}]- \frac{1}{x_n-x_{n-1}}f[x_{n-1}, x_0,\dotsc, x_{n-2}]
= f[x_{n-1}, x_0,\dotsc, x_{n-2}, x_{n}]= f[x_0,x_1,\dotsc, x_{n-1}, x_n].\;\;\Box
For fixed f, the n-th divided difference f[x_0,\dotsc,x_n] defines a smooth real valued function on the confinguration space \newcommand{\eC}{\mathscr{C}}
\eC_{n+1}=\bigl\lbrace\; (x_0,\dotsc, x_n)\in\bR^{n+1};\;\;x_i\neq x_j,\;\;\forall i\neq j\;\bigr\rbrace.
The above result shows that this function admits a smooth extension to \bR^{n+1}. This extension is unique since \eC_{n+1} is dense in \bR^{n+1}.
The volume of the connected region
S_n=\bigl\lbrace (s_1,\dotsc, s_n)\in\bR^n;\;\;0\leq s_n\leq \cdot \leq s_1\leq 1\;\bigr\rbrace
is \frac{1}{n!}. Invoking Proposition 2 we deduce that for any x_0,\dotsc, x_n\in \bR there exists \xi\in [\min x_j,\max x_k] such that
f[x_0,\dotsc, x_n]=\frac{1}{n!} f^{(n)}(\xi).
In particular, this implies that
f[\,\underbrace{x,\dotsc,x}_{n+1}\,]=\frac{1}{n!} f^{(n)}(x).\tag{6} \label{6}
The recurrence relation (\ref{R}) extends by continuity to any nodes x_0,\dotsc, x_n not necessarily distinct. Given the sequence of nodes x_0,\dotsc, x_n,\dotsc we defined following Feller the sequence of polynomials F_n(x)
F_n(x):=\sum_{k=0}^n f[x_0,\dotsc, x_k] (x-x_0)\cdots (x-x_{k-1}).
Observe that
F_0(x)= f(x_0),\;\; F_1(x)= F_0(x)+f[x_0,x_1)(x-x_0), ...
Define
R_n(x)= f[x,x_0,\dotsc, x_n](x-x_0)\cdots (x-x_n).
Observe that
R_0(x)=f(x)-f(x_0),
R_{n}(x) =\bigl(f[x,x_0,\dotsc, x_{n-1}]- f[x_0,\dotsc, x_n]\bigr)(x-x_0)\dotsc (x-x_{n-1})= R_{n-1}(x) +\bigl(\, F_{n-1}(x)-F_n(x)\,\bigr)
We deduce that
R_n(x) = R_0(x) + F_0(x)-F_n(x)
which translates into Newton's interpolation formula
f(x) = F_n(x) + R_n(x)
= f(x_0)+f[x_0,x_1](x-x_0)+\cdots +f[x_0,x_1,\dotsc,x_n](x-x_0)\cdots (x-x_{n-1})+ f[x,x_0,\dotsc, x_n](x-x_0)\cdots (x-x_n). \tag{N}
To start, suppose \newcommand{\bR}{\mathbb{R}} \newcommand{\bZ}{\mathbb{Z}} that f:\bR\to \bR is a smooth function. For any pairwise distinct points x_0, x_1,\dotsc,x_n we define recursively
f[x_0] :=f(x_0),\;\; f[x_0,x_1]:=\frac{f(x_1)-f(x_0)}{x_1-x_0},
f[x_0,x_1,\dotsc, x_n] :=\frac{f[x_1,\dotsc,x_n]-f[x_0,\dotsc, x_{n-1}]}{x_n-x_0}=\frac{f[x_0,\dotsc,x_{n-1}]-f[x_1,\dotsc, x_n]}{x_0-x_n}.\tag{R}\label{R}
The quantity f[x_0,\dotsc, x_n] is called the n-th divided difference of f at the nodes x_0,\dotsc, x_n. Note that we have
f[x_0,x_1]= \frac{f(x_0)}{x_0-x_1}+\frac{f(x_1)}{x_1-x_0}.
Observe that
f[x_1,x_2]- f[x_0,x_1]= \frac{f(x_1)}{x_1-x_2}+\frac{f(x_2)}{x_2-x_1}- \frac{f(x_0)}{x_0-x_1}-\frac{f(x_1)}{x_1-x_0}
=\frac{f(x_2)}{x_2-x_1}+\frac{f(x_1)(x_2-x_0)}{(x_1-x_2)(x_1-x_0)} - \frac{f(x_0)}{x_0-x_1}.
We deduce
\begin{equation} f[x_0,x_1,x_2]=\frac{ f[x_1,x_2]- f[x_0,x_1]}{x_2-x_0}=\frac{f(x_0)}{(x_0-x_1)(x_0-x_2)}+\frac{f(x_1)}{(x_1-x_2)(x_1-x_0)}+ \frac{f(x_2)}{(x_2-x_0)(x_2-x_1)}\tag{I}\label{I}. \end{equation}
Arguing inductively we obtain the following description
f[x_0, x_1,\dotsc, x_n]=\frac{f(x_0)}{(x_0-x_1)(x_0-x_2)\cdots (x_0-x_n)}+\frac{f(x_1)}{(x_1-x_0)(x_1-x_2)\cdots(x_1-x_n)}+\cdots + \frac{f(x_n)}{(x_n-x_0)\cdots (x_n-x_{n-1})}.
This last expression can be given a more symmetric expression by introducing the polynomial
\Phi_{x_0,\dotsc,x_n}:=\prod_{k=0}^n (x-x_k).
We then have
\Phi'_{x_0,\dotsc, x_n}(x)=(x-x_1)\cdots (x-x_n)+(x-x_0)(x-x_2)\cdots (x-x_n)+\cdots +(x-x_0)\cdots (x-x_{n-1}),
f[x_0, x_1,\dotsc, x_n]=\sum_{k=0}^n\frac{f(x_k)}{\Phi'_{x_0,\dotsc,x_n}(x_k)}.\tag{1}\label{1}
The last equality shows has the following useful consequence.
Proposition 1. The n-th divided difference f[x_0,\dotsc, x_n] does not change if we permute the nodes x_0, x_1,\dotsc, x_n. \Box
The equality (\ref{1}) can be conveniently rephrased in terms of Vandermonde-like determinants. Denote by V(x_0,\dotsc, x_n) the (n+1)\times (n+1) matrix
V(x_0, \dotsc, x_n)=\left[ \begin{array}{ccccc} 1 & 1 & 1 &\cdots & 1\\ x_0 & x_1 & x_2 &\cdots & x_n\\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_n^2\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ x_0^n & x_1^n & x_2^n & \cdots & x_n^n \end{array} \right],
and by V_f(x_0,\dotsc, x_n) the (n+1)\times (n+1) matrix
V_f(x_0, \dotsc, x_n)=\left[ \begin{array}{ccccc} 1 & 1 & 1 &\cdots & 1\\ x_0 & x_1 & x_2 &\cdots & x_n\\ x_0^2 & x_1^2 & x_2^2 & \cdots & x_n^2\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1}\\ f(x_0) & f(x_1) & f(x_2) & \cdots & f(x_n) \end{array} \right].
Expanding along the last row of V_f(x_0,\dotsc, x_n) we obtain the following alternate description of the n-th divided difference
f[x_0,x_1,\dotsc, x_n]= \frac{\det V_f(x_0,\dotsc, x_n)}{V(x_0,\dotsc, x_n)}. \tag{V}
Next, we want to prove that f[x_0,\dotsc, x_n] makes sense even if the nodes are not pairwise disjoint. We need to make small technical digression.
Consider the n-simplex
\Delta_n :=\Bigl\{ (t_0,\dotsc, t_n)\in\bR^{n+1}_{\geq 0};\;\;\sum_{k=0}^n t_k=1\Bigr\}.
We can view \Delta_n as the graph of the function
T_n\ni (t_1,\dotsc, t_n)\mapsto t_0=1-(t_1+\cdots +t_n)\in\bR,
where
T_n:=\bigr\{ (t_1,\dotsc, t_n)\in\bR^n_{\geq 0};\;\; t_1+t_2+\cdots +t_n\leq 1\bigr\}.
If we use (t_1,\dotsc, t_n) as coordinates on \Delta_n, then we deduce that dA_{\Delta_n}, the area density on \Delta_n is given by
|dA_{\Delta_n}(t_1,\dotsc, t_n)|={\sqrt{n+1}} |dt_1\cdots d t_n|.
On T_n we can introduce new coordinates
s_1=t_1+\cdots +t_n, \;\; s_2= t_2+\cdots +t_n,\dotsc, s_n=t_n.
We observe that
0\leq s_n\leq \cdots \leq s_1\leq 1,\;\; dt_1\cdots dt_n=ds_1\cdots ds_n,
t_1=s_1-s_2,\;\;t_2=s_2-s_3,\dotsc.
If u: \Delta_n\to \bR is a continuous function, then we can regard it as a function of the variables s_1, \dotsc, s_n and we have
\int_{\Delta_n} u(t_0,\dotsc, t_n) |dA_{\Delta_n}| = \sqrt{n+1}\int_{0\leq s_n\leq \cdots \leq s_1\leq 1} u(s_1, \dotsc, s_n) ds_1\cdots ds_n
={\sqrt{n+1}}\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} u(s_1,\dotsc, s_n) ds_n.
Hence
\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} u(s_1,\dotsc, s_n)=\frac{1}{\sqrt{n+1}}\int_{\Delta_n} u(t_0,\dotsc, t_n) |dA|. \tag{2} \label{2}
Proposition 2. (Hermite) For any n>0 and pairwise distinct points x_0,\dotsc, x_n\in\bR we have
f[x_0,\dotsc, x_n]=\frac{1}{\sqrt{n+1}}\int_{\Delta_n} f^{(n)} (t_0x_0+\cdots +t_n x_n) dA(t_0,\dotsc, t_n). \tag{3} \label{3}
Proof. In view of (\ref{2}) we see that (\ref{3}) is equivalent to
f[x_0,\dotsc, x_n]= \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} f^{(n)} (y_n) ds_n, \tag{4}\label{4}
where
y_n=(1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-1}-s_n)x_{n-1}+ s_n x_n.\tag{5} \label{5}
For n=1 the right-hand-side of (\ref{4}) becomes
\int_0^1 f'(x_0+t(x_1-x_0)) dt = \frac{1}{x_1-x_0} (f(x_1)-f(x_0))=f[x_0,x_1].
We now proceed inductively and we observe that
\int_0^{s_{n-1}} f^{(n)} (y_n) ds_n = \frac{1}{x_n-x_{n-1}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2} +s_{n-1} x_n\;\bigr)
- \frac{1}{x_n-x_{n-1}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2}+s_{n-1} x_{n-1}\;\bigr).
Hence
\int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-1}} f^{(n)} (y_n) ds_n
= \frac{1}{x_n-x_{n-1}} \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-2}}f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2} +s_{n-1} x_n\;\bigr) ds_{n-1}
- \frac{1}{x_n-x_{n-1}} \int_0^1d s_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{n-2}} f^{(n-1)}\bigl(\; (1-s_1) x_0 +(s_1-s_2) x_1+\cdots +(s_{n-2}-s_{n-1})x_{n-2}+s_{n-1} x_{n-1}\;\bigr) ds_{n-1}
\frac{1}{x_n-x_{n-1}}f[x_0,\dotsc,x_{n-2},x_{n}]- \frac{1}{x_n-x_{n-1}}f[x_0,\dotsc, x_{n-2}, x_{n-1}]
= \frac{1}{x_n-x_{n-1}}f[x_0,\dotsc,x_{n-2},x_{n}]- \frac{1}{x_n-x_{n-1}}f[x_{n-1}, x_0,\dotsc, x_{n-2}]
= f[x_{n-1}, x_0,\dotsc, x_{n-2}, x_{n}]= f[x_0,x_1,\dotsc, x_{n-1}, x_n].\;\;\Box
For fixed f, the n-th divided difference f[x_0,\dotsc,x_n] defines a smooth real valued function on the confinguration space \newcommand{\eC}{\mathscr{C}}
\eC_{n+1}=\bigl\lbrace\; (x_0,\dotsc, x_n)\in\bR^{n+1};\;\;x_i\neq x_j,\;\;\forall i\neq j\;\bigr\rbrace.
The above result shows that this function admits a smooth extension to \bR^{n+1}. This extension is unique since \eC_{n+1} is dense in \bR^{n+1}.
The volume of the connected region
S_n=\bigl\lbrace (s_1,\dotsc, s_n)\in\bR^n;\;\;0\leq s_n\leq \cdot \leq s_1\leq 1\;\bigr\rbrace
is \frac{1}{n!}. Invoking Proposition 2 we deduce that for any x_0,\dotsc, x_n\in \bR there exists \xi\in [\min x_j,\max x_k] such that
f[x_0,\dotsc, x_n]=\frac{1}{n!} f^{(n)}(\xi).
In particular, this implies that
f[\,\underbrace{x,\dotsc,x}_{n+1}\,]=\frac{1}{n!} f^{(n)}(x).\tag{6} \label{6}
The recurrence relation (\ref{R}) extends by continuity to any nodes x_0,\dotsc, x_n not necessarily distinct. Given the sequence of nodes x_0,\dotsc, x_n,\dotsc we defined following Feller the sequence of polynomials F_n(x)
F_n(x):=\sum_{k=0}^n f[x_0,\dotsc, x_k] (x-x_0)\cdots (x-x_{k-1}).
Observe that
F_0(x)= f(x_0),\;\; F_1(x)= F_0(x)+f[x_0,x_1)(x-x_0), ...
Define
R_n(x)= f[x,x_0,\dotsc, x_n](x-x_0)\cdots (x-x_n).
Observe that
R_0(x)=f(x)-f(x_0),
R_{n}(x) =\bigl(f[x,x_0,\dotsc, x_{n-1}]- f[x_0,\dotsc, x_n]\bigr)(x-x_0)\dotsc (x-x_{n-1})= R_{n-1}(x) +\bigl(\, F_{n-1}(x)-F_n(x)\,\bigr)
We deduce that
R_n(x) = R_0(x) + F_0(x)-F_n(x)
which translates into Newton's interpolation formula
f(x) = F_n(x) + R_n(x)
= f(x_0)+f[x_0,x_1](x-x_0)+\cdots +f[x_0,x_1,\dotsc,x_n](x-x_0)\cdots (x-x_{n-1})+ f[x,x_0,\dotsc, x_n](x-x_0)\cdots (x-x_n). \tag{N}
Subscribe to:
Posts (Atom)