Suppose we are given a function $f:\bR\to \bR$. Discretize the real axis and think of it as the collection of point $\Lambda_\hbar:=\hbar \bZ$, where $\hbar>0$ is a small number. We can then approximate $f$ with its restriction $f^\hbar:=f|_{\Lambda_\hbar}$. This is determined by its

*generating function*, i.e., the formal power series $\newcommand{\ii}{\boldsymbol{i}}$

$$G^\hbar_f(t)=\sum_{n\in\bZ}f(n\hbar)t^n\in \bR[[t,t^{-1}]]. $$

Then

$$G^\hbar_{f_0\ast f_1}(t)= G^\hbar_{f_0}(t)\cdot G^\hbar_{f_1}(t).\tag{1} \label{1} $$

Observe that if we set $t=e^{-\ii\xi \hbar}$, then

$$G^\hbar_f(t)=\sum_{x\in\Lambda_\hbar} f(x) e^{-\ii \xi x}. $$

Moreover

$$ \hbar G^\hbar_f(e^{-\ii\xi \hbar})=\sum _{n\in \bZ} \hbar f(n\hbar) e^{-\ii\xi(n\hbar)}, \tag{2}\label{2}$$

and the expression in the right hand sum is a "Riemann sum" approximating

$$\int_{\bR} f(x)^{-\ii\xi x} dx. $$

Above we recognize the Fourier transform of $f$. If we let $\hbar\to 0$ in (\ref{2}) and we use (\ref{1}) we obtain the wellknown fact that the Fourier transform maps the convolution to the usual pointwise product of functions. (The fact that this rather careless passing to the limit can be rigorous is what the Poisson formula is all about.)

The above argument shows that we can regard $\hbar G_f^\hbar(1)$ as an approximation for $\int_{\bR} f(x) dx$.

Denote by $\delta(x)$ the Delta function concentrated at $0$. The Delta function concentrated at $x_0$ is then $\delta(x-x_0)$. What could be the generating function of $\delta(x)$, $G_\delta^\hbar$? First, we know that $\delta(x)=0$, $\forall x\neq 0$ so that

$$G_\delta^\hbar(t) =ct^0=c. $$

The constant $c$ can be determined from the equality

$$ 1= \int_{\bR} \delta(x) dx=\hbar G_\delta^\hbar(1)=\hbar c$$

Hence $\hbar G_\delta^\hbar(1)=1$. Similarly

$$ G^\hbar_{\delta(\cdot-n\hbar)} =\frac{1}{\hbar} t^n. $$

In particular, the discretization $\delta^\hbar(x-n\hbar)$ of $\delta(x-n\hbar)$ is the function $\Lambda_\hbar\to \bR$ with value $\frac{1}{\hbar}$ at $x=n\hbar$ and $0$ elsewhere.

Putting together all of the above we obtain an equivalemn description for the generating functon af a function $f:\Lambda_\hbar\to\bR$. More precisely

$$ G^\hbar_f(t)=\hbar\sum_{\lambda\in\Lambda_\hbar}f(\lambda) G^\hbar_{\delta(\cdot-\lambda)}(t). $$

In other words

$$f^\hbar= \hbar\sum_{\lambda\in\Lambda_\hbar} f(\lambda)\delta^\hbar_\lambda,\;\;\delta^\hbar_\lambda(\cdot):=\delta^\hbar(\cdot-\lambda). \tag{3}\label{3}$$

The last equality suggests an interpretation for the generating function as an algebraic encoding of the fact that $f:\Lambda_\hbar\to\bR$ is a superposition of $\delta$ functions concentrated along the points of the lattice $\Lambda_\hbar$. The factor $\hbar$ in (\ref{3}) is a discretization of the infinitesimal $dx$, which indicates that $\hbar\delta^\hbar_\lambda$ should be viewed as a measure. Observe that

$$(\hbar\delta^\hbar_\lambda)\ast (\hbar\delta^\hbar_\mu)=\hbar\delta^\hbar_{\lambda+\mu}. \tag{4}\label{4}$$