Loading web-font TeX/Math/Italic
Powered By Blogger

Tuesday, October 23, 2018

The 9th Congress of Romanian Mathematicians

The 9th Congress of Romanian mathematicians will take place at Galați Romania from June 28 to July 3 2019. More details at the Congress website.

Sunday, October 21, 2018

Notes on Elementary Probability

For the first time, I have self-published with Amazon.   I liked  how my undergraduate probability notes turned out and I decided to publish them with Amazon. You can get them here.  I will still make them available at no cost to my students in electronic form.  Here is the cover.





By the way, I here is my author page on Amazon

Wednesday, June 6, 2018

About order statistics.

 Suppose that X_1,\dotsc , X_n are independent random variables uniformly distributed in [0,1]. Denote by Y_i=X_{(i)} its order statistics.

The random vector (Y_1,\dotsc, Y_n) has  distribution

p(y_1,\dotsc, y_n)=\begin{cases} n!, & 0\leq y_1\leq \cdots \leq y_n\leq 1, \\ 0, & {\rm otherwise}. \end{cases}

The  random variable Y_k has distribution

p_k(y_k)=n!\int_{\substack{0\leq y_1\cdots \leq y_k\\ y_k\leq y_{k+1}\leq \cdots \leq y_n\leq 1}}dy_1\cdots dy_{k-1}dy_{k+1}\cdots dy_{n}

= n!\left(\int_{0\leq y_1\leq \cdots \leq y_{k-1} \leq y_k} dy_1\cdots dy_{k-1}\right)\left(\int_{y_k\leq y_{k+1}\leq \cdots \leq y_{n} \leq 1} dy_{k+1}\cdots dy_{n}\right)

= \frac{n!}{(k-1)!(n-k)!} y_k^{k-1}(1-y_k)^{n-k}

Thus  p_k is a B(k,n+1-k)-distribution.   \newcommand{\bE}{\mathbb{E}} We have
\bE[Y_k]=\frac{n!}{(k-1)!(n-k)!}\int_0^1 y^k(1-y)^{n-k} dy=\frac{n!}{(k-1)!(n-k)!}\frac{\Gamma(k+1)\Gamma(n-k+1)}{\Gamma(n+2)}

= \frac{n!}{(k-1)!(n-k)!}\frac{k!(n-k!)}{(n+1)!}=\frac{k}{n+1}.

\bE[Y_k^2]=\frac{n!}{(k-1)!(n-k)!}\int_0^1 y^{k+1}(1-y)^{n-k} dy= \frac{n!}{(k-1)!(n-k)!}\frac{\Gamma(k+2)\Gamma(n-k+1)}{\Gamma(n+3)}

=\frac{n!}{(k-1)!(n-k)!}\frac{(k+1)!(n-k)!}{(n+2)!}=\frac{k(k+1)}{(n+1)(n+2)}.

\DeclareMathOperator{\Var}{Var}. Hence
\Var[Y_k]= \frac{k(k+1)}{(n+1)(n+2)}-\left(\frac{k}{n+1}\right)^2=\frac{k}{n+1}\left(\frac{k+1}{n+2}-\frac{k}{n+1}\right)=\frac{k(n+1-k)}{(n+1)^2(n+2)}.

We deduce
\Delta_n=\sum_{k=1}^n \Var[Y_k]=\frac{1}{(n+1)^2(n+2)}\sum_{k=1}^n k(n+1-k).


We have
\sum_{k=1}^nk(n+1-k)= (n+1)\sum_{k=1}^n kn-\sum_{k=1}^n k(k-1)

= \frac{n^2(n+1)}{2}-\sum_{k=1}^nk(k-1).

Now we write
k(k-1)=\frac{1}{3}\Big(\; k^3-(k-1)^3-1\;\Big)

so
\sum_{k=1}^n k(k-1)=\frac{1}{3}\Big(\; n^3 -n\;\Big)=\frac{n(n+1)(n-1)}{3}.

We deduce
\Delta_n= \frac{1}{(n+1)^2(n+2)}\left(\;\frac{n^2(n+1)}{2}-\frac{n(n+1)(n-1)}{3}\;\right)=\frac{n(n+1)(n+2)}{6(n+1)^2(n+2)}=\frac{n}{6(n+1)}.