Loading [MathJax]/extensions/TeX/newcommand.js
Powered By Blogger

Friday, August 9, 2013

The Fulton-MacPherson compactification of a configuration space

\newcommand{\bR}{\mathbb{R}} \newcommand{\bZ}{\mathbb{Z}} \DeclareMathOperator{\Bl}{\boldsymbol{Bl}}

Suppose that M is a real analytic manifold of dimension m. Fix a finite set L of labels. For any subset S\subset L we define the following objects.


  •  The manifold M^S consisting of  maps S\to M. We will indicate a point in M^S as a collection x_S:=(x_s)_{s\in S},  x_s\in M, \forall s\in S.
  •  The configuration space M(S)\subset consisting of injective maps S\to M.
  • The  thin diagonal  \Delta_S\subset M^S consisting of the constant maps S\to M.


The space of configurations M(L) is an open subset of M^L. We want to construct   a certain  completion  M[L] of M(L) as a    manifold with corners.  This completion is known as the  Fulton-MacPherson compactification of M.  The completion M[L] is compact when M is compact.  We follow closely the approach   of Axelrod and  Singer, Chern-Simons perturbation theory.II,  J. Diff. Geom., 39(1994), 173-213.


We begin with some simple observations. Observe  that if S\subset S', then we  have a natural projection \pi_S: M^{S'}\to M^S which associates to a map S'\to S its restriction to S

M^{S'}\ni x_{S'}\mapsto x_{S}\in M^S.

\newcommand{\hra}{\hookrightarrow}  We set

\Delta_S^L=\pi_S^{-1}(\Delta_S)\subset M^L.

More explicitly, \Delta_S^L consists of the maps L\to M which are constant on S. Observe that

M^L\setminus M(L)=\bigcup_{|S|\geq 2} \Delta_S^L.

For x\in M and S\subset M we denote by x^S the constant map S\to\lbrace x\rbrace viewed as an element in M^S. We can identify x^S with a point in x\in M so

T_{x^S}M^S\cong (T_xM)^S.

The thin diagonal  \Delta_S is a submanifold in M^S of codimension m(|S|-1).  We denote by \newcommand{\eN}{\mathscr{N}} \eN_S the normal bundle of the embedding \Delta_S\hra M^S.    The  fiber \eN_S(x) of the normal bundle  \eN_S=T_{x^S}M^S/T_{x^S}\Delta_S at a point x^S is the quotient of (T_xM)^S modulo the equivalence relation \newcommand{\Llra}{\Longleftrightarrow}

(u_S)_{s\in S}\in (T_xM)^S\sim  (v_S)_{s\in S}\in (T_xM)^S\;\stackrel{def}{\Llra}\; (u_{s_0}-u_{s_1})=v_{s_0}-v_{s_1},\;\;\forall s_0,s_1\in S.

We identify \eN_S(x) with the subspace of Z_S(x)\subset (T_xM)^L consisting of vectors v_L=(v_\ell)_{\ell\in L}, v_\ell\in T_xM such that

v_\ell=0,\;\;\forall \ell\in L\setminus S,\;\; \sum_{s\in S} v_s=0. \tag{1}\label{1}

We have a natural \newcommand{\bsP}{\boldsymbol{P}}  projector

\bsP_S: (T_x M)^L\to Z_S(x)

defined as follows. For a vector \vec{v}=(v_\ell)_{\ell\in L} \in (T_xM)^L, we denote by \newcommand{\bb}{\boldsymbol{b}} \bb_S(\vec{v})\in T_xM  the barycenter of its  S-component

\bb_S(\vec{v}):=\frac{1}{|S|}\sum_{s\in S} v_s\in T_x M,

and we set

\bsP_S(\vec{v}) =(\bar{v}_s)_{s\in S},\;\;\bar{v}_s:=v_s-\bb_S(\vec{v}),\;\;\forall s\in S,\;\;v_\ell=0.

Note that  for u_S\in (T_xM)^S we have  u_S\sim \bsP_S u_S.

We denote by \Bl(S,M) the radial blowup of M^S along \Delta_S.  This is  manifold with boundary whose interior  is naturally identified with M_*^S:=M^S\setminus \Delta_S. \newcommand{\bsS}{\boldsymbol{S}}  Its  boundary is \bsS(\eN), the "unit" sphere  bundle bundle of \eN.    Equivalently  we identify the fiber of \bsS(\eN) at x^S with the quotient

 \bsS(\eN(x^S))=\bigl(\; Z_S(x)\setminus 0\; \bigr)/\propto,

where

u_S\propto v_S  \Llra \exists c>0:\;\; v_S=c u_S.


Following Fulton and MacPherson we will refer to the elements  in Z_S(x) as S-screens at x.   Up to  a a positive rescaling, an S-screen  at x^S\in \Delta_S is a collection of points  u_S\in (T_xM)^S\setminus 0^S  with barycenter at the origin.  If we fix a metric g on M, then the fiber \bsS\bigl(\;\eN(x^S)\;\bigr) that can be identified with the collection v_L\in (T_xM)^L satisfying (\ref{1}) and



\max_{s\in S}|v_s|=1. \tag{3}\label{3}


There is a natural   smooth surjection (blow-down map)

\beta_S:\Bl(S,M)\to M^S

whose restriction to the interior of \Bl(S,M) \DeclareMathOperator{\int}{\boldsymbol{int}} induces a diffeomorphism to M^S_*    We denote by \beta_S^{-1} the inverse

\beta_S^{-1}: M_*^S\to \int \Bl(S,M).

For x_S\in M_*^S we set \newcommand{\ve}{{\varepsilon}}

\hat{x}_S:=\beta_S^{-1}(x_S).

If

[0,\ve)\ni t\mapsto  x_S(t) \in M^S,\;\; x_S(0)=x_0^S\in\Delta_S

is a real analytic   path such that x_S(t)\in M_*^S for t>0, then the limit \lim_{t\searrow 0}\hat{x}_S(t) can be described as follows.
  • Fix  local (real analytic) coordinate near x_0 so that the points x_{s}(t) can be  identified with points in a neighborhood of 0\in\bR^m.
  • For t>0 denote by \bb(t) the barycenter of the collection (x_s(t))_{s\in S}\subset\bR^m, \bb(t)=\frac{1}{|S|}\sum_{s\in S} x_s(t).
  • For t>0  and s\in S  define  \bar{x}_s(t) =x_{s}(t)-\bb(t),  m(t)=\max_s|\bar{x}_s(t)|.
Then \lim_{t\searrow 0}\hat{x}_S(t) can be identified with the vector

\lim_{t\searrow 0}\frac{1}{m(t)} \bigl(\;\bar{x}_s(t)_{s_\in S}\;\bigr)\in  \eN(x_0^S).


We have a natural map \newcommand{\eX}{\mathscr{X}}

\gamma: M(L)\to \eX(M,L):=M^L\times\prod_{|S|\geq 2} \Bl(S,M),\;\; M(L)\ni x_L\mapsto \gamma(x_L):=\Bigl(\; x_L;\;\;(\hat{x}_S)_{|S|\geq 2}\;\Bigr)\in  \eX(M,L).


The Fulton-MacPherson compactification of M(V) is the closure of \gamma\bigl(\;M(L)\;\bigr) in \eX(M,L).

We want to give a more  explicit description of this  closure.  Observe first that \eX(M,L) and thus any point in the closure of \gamma(M[L]) can be approached from within \gamma(M[L]) along a real analytic path.  Suppose  that (0,\ve)\ni t \mapsto x_L(t)  is a real analytic path such that \gamma\bigl(\; x_L(t)\;\bigr) approaches a  point \gamma^0\in \eX(M,L). The limit point is a collection ( x^*_L,  (y(S))_{|S|\geq 2})\in \eX(M,L).



To the point x^*_L\in M^L we associate an equivalence relation on L

\ell_0\sim_0 \ell_1 \Llra  x^*_{\ell_0}=x^*_{\ell_1}.

Denote by \newcommand{\eC}{\mathscr{C}} \eC_0\subset 2^S the collection of equivalence classes  of \sim_0 of cardinality \geq 2.

The  subsets S of L of cardinality \geq 2  are of two types.


  1.  The set S is not contained in  any of the equivalence classes in \eC_0, i.e., \exists s_0,s_1\in S such that x^*_{s_0}\neq x^*_{s_1}. We will refer to such subsets as separating subsets.Then y_S=\hat{x}_S^*.
  2.  The subset S is contained in an equivalence class C\in \eC_0.   In other words  there exists x^*(C)\in M such that x^*_{s}=x^*(C)\in M, \forall s \in C.  We will refer to such a subset as non-separating.  Then y(S) is an S-screen  at x^*(C), y(S)=\bigl(\;y(S)_s\;\bigr)_{s\in S}.

Fix an equivalence class C\in\eC_0. Here is  how one computes   y_S for S non-separating, S\subset C.  The point x^*(C)^S\in\Delta^S is approached along the real analytic path

(0,\ve)\ni t\mapsto x_S(t)\in M(S).  

Choose real analytic local coordinates  at x^*(C) so a neighborhood of this point  in M  is identified with a neighborhood of 0 in \bR^m.  We have Taylor expansions

x_s(t) = v_s(1) t+v_2(2)t^2+\cdots ,\;\; s\in S.

For k\geq 1  and s\in S we denote by [x_s(t)]_k the k-th jet of x_s(t) at 0

[x_s(t)]_k:=\sum_{j=1}^k v_s(j) t^j.

For each   k\geq 1 we have an equivalence relation \sim_k on S given by


s \sim_k s'\Llra [x_s(t)]_k=[x_{s'}(t)]_k. .

We denote by \sim_0 the trivial equivalence relation  on C with a single equivalence class C. Let k=k_C(S) be the smallest k such that \sim_k is a nontrivial equivalence relation on S.  The integer k_C(S) is called the separation order of S.  Then  the S-screen y(S) is described as the projection

y(S)\propto \bsP_S v_S(k),\;\; v_S(k)=\bigl(\; v_s(k)\;\bigr)_{s\in S}.




Remark 1.   Suppose S\subset S'\subset C\in \eC_0  and |S|\geq 2.  Then  k_C(S) \geq k_C(S'). Moreover 


k_C(S)=k_C(S') \Llra \bsP_Sy_{S'} \neq 0 \Llra y(S)\propto \bsP_S y(S').  

The condition \bsP_S y(S)\neq 0   signifies that    there exist s_0,s_1\in S' such that

y(S')_{s_0}\neq y(S')_{s_1}.

Note that if S_0,S_1\subset C, |S_0|,|S_1|\geq 2 then

k_C(S_0\cup S_1)\leq \min\bigl\lbrace\; k_C(S_0),k_C(S_1)\;\bigr\rbrace.


Recall that we have a  sequence of equivalence relations \sim_k on C\in \eC_0. They are finer and finer \sim_k\prec \sim_{k+1}, i.e.

 s\sim_{k+1}s'\Rightarrow s\sim_k s'.

Observe that 

S\subset C,\;\;|S|\geq 2,\;\; k_C(S)>k \Llra   \mbox{$S$ is contained in an equivalence class of $\sim_k$.} \tag{4}\label{4}

Equivalently

S\subset C,\;\;|S|\geq 2,\;\; k_C(S)\leq k \Llra \mbox{exist distinct equivalence classes $S_0,S_1$ of $\sim_k$ such that}\;\; S\cap S_0, S\cap S_1\neq \emptyset \tag{4'}\label{4'}




Let  N_C  denote the smallest  N such that all the equivalence classes of \sim_N consists of single points., i.e.,

s \sim_N  s'\Llra s=s'.


Consider \newcommand{\eS}{\mathscr{S}}  the collection \eS_C of all the equivalence classes  of cardinality \geq 2 of the relations \sim_k, k\geq 0  on C . This is a nested family of subsets of C i.e., if S_0, S_1\in\eS_C, then

S_0\cap S_1 \neq \emptyset  \Llra S_0\subset S_1 \;\;\mbox{or}\;\;S_1\subset S_1.

Moreover C\in \eS_C.  Observe that if S_0,S_1\in \eS_C and S_0\subsetneq S_1, then  k_C(S_0)> k_C(S_1). Using  Remark 1 we deduce

S_0,S_1\in \eS_C,\;\;S_0\subsetneq S_1 \Rightarrow   \bsP_{S_0}y(S_1)=0. \tag{5}\label{5}

Suppose  now that S\subset C and |S|\geq 2. We set

\hat{S}=\bigcap_{S\subset S' \in\eS_C} S'.

In other words, \hat{S} is the smallest subset in \eS_C containing S

Lemma 2.  We have k_C(S)= k_C(\hat{S}).  


Proof. Observe first  we have  k_C(S)\leq k_C(\hat{S}).  Set k_0 :=k_C(S).

If k_C(\hat{S})> k_0,  then (\ref{4}) implies  \hat{S} is contained in an equivalence class of \sim_{k_0}. On the other hand k_C(S)=k_0   (\ref{4'}) implies   S_0 intersects nontrivially two  equivalence classes of \sim_{k_0}. This contradicts the condition S\subset \hat{S}. qed 


Using  Remark 1 we deduce 

 S\subset C,\;\;|S|\geq 2 \Rightarrow y(S)\propto \bsP_S y(\hat{S}). \tag{6}\label{6}

The   conditions (\ref{5}), (\ref{6})  describe  some compatibility conditions satisfied  by the screens y(S), S\subset L non-separating.


We can now form the family of subsets of L

\eS=\bigcup_{C\in\eC_0} \eS_C.

This also a nested  family  of subsets of cardinality \geq 2. A subset S\subset L of cardinality \geq  2 is  called \eS-separating  if it is not contained in any of the sets of \eS. Otherwise it is called nonseparating.     For any separating set S we denote by  \hat{S} the smallest subset of \eS containg S.  The limit point

c:=  \Bigl(\;x^*(L),  \bigl(\;y(S)\;\bigr)_{S\subset L,\;|S|\geq 2}\;\Bigr)\in\eX(M,L) satifies the following conditions.

 y(S)\in  \beta^{-1}_S\bigl(\;M^S_*\;\bigr),\;\; \mbox{if  $S$ is separating}. \tag{$C_1$} \label{C1}

 y(S) \;\;\mbox{is an $S$-screen if $S$ is non-separating}. \tag{$C_2$} \label{C2}

 S_0,S_1\in \eS,\;\;S_0\subset S_1\Rightarrow \bsP_{S_0}y(S_1)=0. \tag{$C_3$}\label{C3}

   S\;\;\mbox{nonseparating} \Rightarrow  y(S)\propto \bsP_S y(\hat{S}). \tag{$C_4$}\label{C4}

Comments. (a) Let us recall that (\ref{C3}) signifies that the components y(S_1)_s s\in S_0 are identical.

(b)  Let me say a few words  about the interpretation of the nested family \eS. A set  S    corresponds to a collection of distinct points in (x_s)_{s\in S}  in M that is clustering ner a  point x^*. A subset   S'  corresponds   to a subcollection  of     the above collection that is clustering at a faster rate.




Running the above arguments in revers  one can  show that a collection

\Bigl(\;x^*(L),  \bigl(\;y(S)\;\bigr)_{S\subset L,\;|S|\geq 2}\;\Bigr)\in\eX(M,L)

belongs to the closure of \gamma\bigl(\;M(L)\;\bigr) in \eX(M, L) if and only if there exists a nested collection \eS of subsets of L of cardinality    \geq 2   such that satisfying the  compatibility conditions (\ref{C1}-\ref{C4})    are satisfied.          The set \eS is called the  type of the limit point.     For  a nested family \eS of subsets  of L of cardinality  \geq 2  we denote  Define  M^(\eS) the collection of points of type \eS.


  The stratum M(\eS) has codimension |\eS|. This can be seen after a tedious computation  that takes into account a  (\ref{C1}-\ref{C4}) .      To explain introduce a notation. Given S, S'\in \eS we  say that S precedes S' and we write this S\lessdot S', if     S is maximal amomgst the subsets of \eS contained but not equal to S'.     Denote by \eS_{\max} the collection of maximal sets in \eS.  (The collection \eS_{\max} coincides with the  collection \eC_0 in the above discussion.) The, if we recall that \dim M=m and |L|=n we deduce

\dim M(\eS)^* =m\left(\; n-\sum_{S\in\eS_{\max}}(|S|-1)\;\right) +\sum_{S\in \eS}\left[\;\;m\left(\;(|S|-1)-\sum_{S'\lessdot  S}\bigl(\;|S'|-1\;\bigr)\right)-1\;\right]


To understand this formula let us consider a point

c =\Bigl(\;x^*(L),  \bigl(\;y(S)\;\bigr)_{S\subset L,\;|S|\geq 2}\;\Bigr)\in M(\eS)^*.

 The coordinates  of x^*(L)  are  described by nm parameters Each S\in \eS_{\max} introduces  the  constraints

x^*(L)_{s_1}=x^*(L)_{s_2},\forall s_1,s_2\in S.


If S=\lbrace s_1,\dotsc,s_N\rbrace we    see that the above constraints are consequences of the linearly independent ones

x^*(L)_{s_1}-x^*(L)_{s_2}= \cdots =x^*(L)_{s_{N-1}}-x^*(L)_{s_N}=0.  

These cut down the number of parameters  required to describe x^*(L)  by m(N-1)=m(|S|-1).

Thus  the number of parameters need to describe x^*(L) is

m\left(\; n-\sum_{S\in\eS_{\max}}(|S|-1)\;\right)


From (\ref{C3}) and (\ref{C4}) we deduce that the collection

  \bigl(\;y(S)\;\bigr)_{S\subset L,\;|S|\geq 2}

is uniquely determined by the subcollection

  \bigl(\;y(S)\;\bigr)_{S\in\eS} .

The screen  y(S) belongs to the unit sphere  \bsS(\eN(x_S)) which has  dimension

\dim M^S-\dim\delta_S-1= m(|S|-1)-1.

Thus we need m(|S|-1) parameters  to describe  the screen   y(S).  However, the condition  (\ref{C3})   shows that any S'\lessdot S induces  m(|S'|-1)  linearly independent constraints on these parameters so that y(S)  has a total of

m\left(\;(|S|-1)-\sum_{S'\lessdot  S}\bigl(\;|S'|-1\;\bigr)\right)-1

degrees of freedom.






We want to describe a  neighborhood of M(\eS) in M[L].   We will achieve this via an explicit map

\Psi : M(\eS)\times \bR_{\geq 0}^{\eS} \to M[L]

defined as follows. Denote by \vec{t}=(t_S)_{s\in\eS} the coordinates on \bR^{\eS}_{\geq 0}. For S\in \eS we set

T_S=\prod_{\eS\ni S'\supseteq S} t_{S'}.


If

c = (x(c), (y(S,c))_{S\in\eS})\in  M(\eS),  then

\Psi(c, \vec{t})=  \bigl( x_\ell (c,\vec{t})\;\bigr)_{\ell \in L},

where

x_\ell(c,\vec{t})= x(c)_\ell +\sum_{\ell\in S\in \eS}  T_S y(S,c)_\ell.  

In the above formula  y(S) is assumed to be a vector of norm 1 in Z_S(x_\ell).

Let us convince ourselves that for fixed c_0\in M(\eS) there exists a  small neighborhood U of c_0 in M(\eS) and a neighborhood V of 0\in\bR^{\eS}_{\geq 0}   such that \Psi maps U\times  V_{>0} into M(L). Here V_{>0}-V\cap \bR^{\eS}_{>0}.

Thus we have to show that if i,j\in L, i\neq j, then for c close to c_0 and \vec{t} close to 0.

x_i(c,\vec{t})\neq x_j(c,\vec{t})

Note that  a set S\in\eS that contains i is either contained in S_0 or contains S_0. A similar  fact is true for j.  Observe that if S\supset\neq S_0 then y(S,c)_i=y(S,c)j. Thus
x(c,\vec{t})_i-x(c,\vec{t})_j =\sum_{S\subsetneq S_0} T_S\bigl(\; y(S)_i-y(S)_j\;\bigr)+ T_{S_0}(y(S_0)_i-y(S_0)_j

 =T_{S_0}\left(\sum_{S\subsetneq S_0} \tau _S\bigl(\; y(S)_i-y(S)_j\;\bigr)+ (y(S_0)_i-y(S_0)_j\;\right),

where

\tau_S=\prod_{S\subset S'\subset\neq S_0} t_{S'}.

The conclusion follows by observing that y(S)_i\neq y(S)_j.

We denote by  M[\eS] the closure  of  M(\eS) in M[L]. Observe that

M(\eS')\subsetneq M[\eS] \Llra \eS'\supsetneq  \eS.