We define an effective divisor on \bR^N to be a function with finite support \mu:\bR^N\to\bZ_{\geq 0}. Its mass, denoted by \bm(\mu), is the nonnegative integer
\bm(\mu)=\sum_{\bp\in\bR^N} \mu(\bp).
We denote by \Div_+(\bR^N) the set of effective divisors. Note that \Div_+(\bR^N) has a natural structure of Abelian semigroup.
For any \bp\in\bR^N we denote by \delta_\bp the Dirac divisor of mass 1 and supported at \bp. The Dirac divisors generate the semigroup \Div_+(\bR^N). We have a natural topology on \Div_+(\bR^N) where \mu_n\to \mu if and only if
\bm(\mu_n)\to \bm(\mu),\;\; {\rm dist}\,\bigr(\;\supp(\mu_n),\; \supp(\mu)\;\bigr)\to 0,
where {\rm dist} denotes the Haudorff distance.
A center of mass is a map
\eC:\Div_+(\bR^N)\to\Div_+(\bR^N)
satisfying the following conditions.
1. (Localization) For any divisor \mu the support of \eC(\mu) consists of a single point \bc(\mu).
2. (Conservation of mass)
\bm(\mu)=\bm\bigl(\;\eC(\mu)\;\bigr),\;\;\forall\mu \in\Div_+(\bR^N),
so that
\eC(\mu)=\bm(\mu)\delta_{\bc(\mu)},\;\;\forall\mu \in\Div_+(\bR^N).
3. (Normalization)
\bc(m\delta_\bp)=\bp,\;\;\bc(\delta_\bp+\delta_\bq)=\frac{1}{2}(\bp+\bq),\;\;\forall \bp,\bq\in\bR^N,\;\;m\in\bZ_{>0}.
4. (Additivity)
\eC(\mu_1+\mu_2)= \eC\bigl(\,\eC(\mu_1)+\eC(\mu_2)\,\bigr),\;\;\forall \mu_1,\mu_2\in \Div_+(\bR^N).
For example, the correspondence
\Div_+ \ni \mu\mapsto \eC_0(\mu)=\bm(\mu)\delta_{\bc_0(\mu)}\in\Div_+,\;\;\bc_0(\mu):=\frac{1}{\bm(\mu)}\sum_\bp \mu(\bp)\bp
is a center-of-mass map. I want to show that this is the only center of mass map.
Proposition If \eC:\Div_+(\bR^N)\to \Div_+(\bR^N) is a center-of-mass map, then \eC=\eC_0.
Proof. We carry the proof in several steps.
Step 1 (Rescaling). We can write the additivity property as
\bc(\mu_1+\mu_2) =\bc\bigl(\; \bm(\mu_1)\delta_{\bc(\mu_1)} +\bm(\mu_2)\delta_{\bc(\mu_2)}\;\bigr).
In particular, this implies that the rescaling property
\bc( k\mu)=\bc(\mu),\;\;\forall\mu \in\Div_+,\;\; k\in\bZ_{>0}. \tag{R}\label{R}
This follows by induction k. For k=1 it is obviously true. In general
\bc( k\mu)=\bc\bigl(\;(k-1)\bm(\mu)\delta_{\bc(\;(k-1)\mu)}+\bm(\mu)\delta_{\bc(\mu)}\;\bigr) =\bc\bigl(\; k\bm(\mu)\delta_{\bc(\mu)}\;\bigr)={\bc(\mu)}
Step 2. (Equidistribution) For any n>0 and any collinear points \bp_1,\dotsc,\bp_n such that
|\bp_1-\bp_2|=\cdots=|\bp_{n-1}-\bp_n|
we have
\eC\Bigl(\sum_{k=1}^n\delta_{\bp_k}\;\Bigr)=\eC_0\Bigl(\sum_{k=1}^n\delta_{\bp_k}\;\Bigr) \tag{E}\label{E}.
Equivalently, this means that
\bc\Bigl(\sum_{k=1}^n\delta_{\bp_k}\;\Bigr)=\bc_0\bigl(\sum_{k=1}^n\delta_{\bp_k}\;\bigr)={\frac{1}{n}(\bp_1+\cdots+\bp_n)}.
We will prove (\ref{E}) arguing by induction on n. For n=1,2 this follows from the normalization property. Assume that (\ref{E}) is true for any n< m. We want to prove it is true for n=m.
We distinguish two cases.
(a) m is even, m= 2m_0. We set
\mu_1=\sum_{j=1}^{m_0} \delta_{\bp_j},\;\;\mu_2=\sum_{j=m_0+1}^{2m_0}\delta_{\bp_j}.
Then
\bc(\mu_1+\mu_2)= \bc\bigl(\; m_0\delta_{\bc(\mu1)}+m_0\delta{\bc(\mu_2)}\;\bigr) =\bc\bigl( \delta_{\bc(\mu_1)}+\delta_{\bc(\mu_2)}\;\bigr). \tag{1}\label{2}
By induction
\bc(\mu_1)=\bc_0(\mu_1),\;\;\bc(\mu_2)=\bc_0(\mu_2).
The normalization condition now implies that
\bc\bigl( \delta_{\bc(\mu_1)}+\delta_{\bc(\mu_2)}\;\bigr)=\bc_0\bigl( \delta_{\bc_0(\mu_1)}+\delta_{\bc_0(\mu_2)}\;\bigr).
Now run the arguments in (\ref{2}) in reverse, with \bc replaced by \bc_0.
(b) m is odd, m=2m_0+1. Define
\mu_1=\delta_{\bp_{m_0+1}},\;\;\mu_2'=\sum_{j<m_0+1}\delta_{\bp_j},\;\;\mu_2''=\sum_{j>m_0+1}\delta_{\bp_j},\;\;\mu_2=\mu_2'+\mu_2''.
(Observe that \bp_{m_0+1} is the mid-point in the string of equidistant collinear points \bp_1,\dotsc,\bp_{2m_0+1}. ) We have
\eC(\mu_2'+\mu_2'')=\eC\bigl( \; \eC(\mu_2')+\eC(\mu_2'')\;\bigr).
By induction
\eC(\mu_2')+\eC(\mu_2'')= \eC_0(\mu_2')+\eC_0(\mu_2'') =m_0\delta_{\bc_0(\mu_2')}+m_0\delta_{\bc_0(\mu_2'')}=m_0\bigl(\;\delta_{\bc_0(\mu_2')}+\delta_{\bc_0(\mu_2'')}\;\bigr).
Observing that
\frac{1}{2}\bigl(\bc_0(\mu_2')+\bc_0(\mu_2'')\;\bigr)=\bp_{m_0+1}
we deduce
\eC(\mu_2)= \eC(\mu_2'+\mu_2'')=m_0\eC\bigl( \delta_{\bc_0(\mu_2')}+\delta_{\bc_0(\mu_2'')}\;\bigr)=m_0\eC_0\bigl( \delta_{\bc_0(\mu_2')}+\delta_{\bc_0(\mu_2'')}\;\bigr)=2m_0\delta_{\bp_{m_0+1}}=2m_0\mu_1.
Finally we deduce
\eC(\mu)=\eC\bigl(\;\eC(\mu_1)+\eC(\mu_2)\;\bigr)=\eC\bigl(\;\eC(\mu_1)+2m_0\eC(\mu_1)\;\bigr)= (2m_0+1)\delta_{\bp_{m_0+1}}=\eC_0(\mu).
Step 3. (Replacement) We will show that for any distinct points \bq_1,\bq_2 and any positive integers m_1,m_2 we can find (m_1+m_2) equidistant points \bp_1,\dotsc,\bp_{m_1+m_2} on the line determined by \bq_1 and \bq_2 such that
m_1\delta_{\bq_1}=\eC_0\Bigl(\sum_{j=1}^{m_1} \delta_{\bp_j}\Bigr)=\eC\Bigl(\sum_{j=1}^{m_1} \delta_{\bp_j}\Bigr),\;\;\;m_2\delta_{\bq_2}=\eC_0\Bigl(\sum_{j=m_1+1}^{m_1+m_2} \delta_{\bp_j}\Bigr)=\eC\Bigl(\sum_{j=m_1+1}^{m_1+m_2} \delta_{\bp_j}\Bigr).
This is elementary. Without restricting the generality we can assume that \bq_1 and \bq_2 lie on an axis (or geodesic) \bR of \bR^N, \bq_0=0 and \bq_2=q>0. Clearly we can find real numbers x_0, r, r>0, such that
\frac{1}{m_1}\sum_{j=1}^{m_1}(x_0+j r)=0,\;\;\frac{1}{m_2}\sum_{j=m_1+1}^{m_1+m_2}(x_0+jr)=q.
Indeed, the above two equalities can be rewritten as
x_0+\frac{m_1+1}{2} r=0,
q=x_0 +m_1 r+\frac{m_2+1}{2}=x_0+\frac{m_1+1}{2} r+\frac{m_1+m_2}{2} r.
Now place the points \bp_j at the locations x_0+jr.
Step 4. (Conclusion) We argue on by induction on mass that
\eC(\mu)=\eC_0(\mu),\;\;\forall \mu\in \Div_+\tag{2}\label{3}
Clearly, the normalization condition shows that (\ref{3}) is true if \supp\mu consists of a single point, or if \bm(\mu)\leq 2.
In general if \bm(\mu)>2 we write \mu=\mu_1+\mu_2 where m_1=\bm(\mu_1),m_2=\bm(\mu_2)<\bm(\mu).
By induction we have
\eC(\mu)= \eC\bigl( \eC(\mu_1)+\eC(\mu_2)\bigr)=\eC(\;\eC_0(\mu_1)+\eC_0(\mu_2)\;\bigr).
If \bc_0(\mu_1)=\bc_0(\mu_2) the divisors \eC_0(\mu_1) \eC_0(\mu_2) are supported at the same point and we are done. Suppose that \bq_1=\bc_0(\mu_1)\neq\bc_0(\mu_2)=\bq_2. By Step 3, we can find equidistant points \bp_1,\dotsc,\bp_{m_1+m_2} such that
m_1\delta_{\bq_1}=\eC\Bigl(\sum_{j=1}^{m_1} \delta_{\bp_j}\Bigr)= \eC_0\Bigl(\sum_{j=1}^{m_1} \delta_{\bp_j}\Bigr)
m_2\delta_{\bq_2}=\eC\Bigl(\sum_{j=m_1+1}^{m_1+m_2} \delta_{\bp_j}\Bigr)=\eC_0\Bigl(\sum_{j=m_1+1}^{m_1+m_2} \delta_{\bp_j}\Bigr).
We deduce that
\eC(\mu)=\eC\Bigl(\sum_{k=1}^{m+1+m_2}\delta_{\bp_k}\Bigr),\;\; \eC_0(\mu)=\eC_0\Bigl(\sum_{k=1}^{m+1+m_2}\delta_{\bp_k}\Bigr).
The conclusion now follows from (\ref{E}). q.e.d
Remark. The above proof does not really use the linear structure. If we uses only the fact that any two points in \bR^N determine a unique geodesic. The Normalization condition can be replaced by the equivalent one
\bc(\delta_\bp+\delta_\bq)= \mbox{the midpoint of the geodesic segment $[\bp,\bq]$}.
If we replace \bR^N with a hyperbolic space the same arguments show that there exists at most one center of mass map.